Evaluating Injuries of the Knee and Shoulder

Massachusetts Medical Society
11th Annual Men’s Health Symposium

Eric Berkson, MD
MGH Orthopaedic Sports Medicine
Director, Mass General Sports Performance Center
Instructor, Harvard Medical School
Team Physician, Boston Red Sox

Disclosures

• No personal conflicts of interest.

• Research supported by:
 – Major League Baseball

• Off label use of some products will be discussed
Sports Medicine Biomechanics

Rising from Chair 2.5 x bodyweight
Downstairs 3.3 x bodyweight
Walking 3 - 6 x bodyweight

10 pound weight loss decreases forces on knee by 30 to 60 pounds with each step
What type of forces are we talking about?

- Force of gravity pulling you toward Earth
 - Sitting in a chair: 1 g
 - Roller Coaster: 2.5 g’s to 6 g’s
 - Formula Rossa, UAE (149MPH)
 - Kingda Ka, Six Flags NJ (456 ft)
 - Tower of Terror, Gold Coast Australia (8.2g)
 - Fighter Jet: 9 g’s

http://www.youtube.com/watch?v=sNu200WkYZw

Forces in the throwing arm

- Shoulder: 12,000 deg/sec
- Elbow: 3600 deg/sec
- Wrist: Over 1000 g’s

MGH Sports Medicine
Today’s Goals

• Correlate anatomy, physical examination, and diagnosis
 • Shoulder
 • Knee
 • Anterior knee pain
 • Lateral knee pain
 • Medial knee pain
 • When to refer?
 • When is this arthritis?
 – What arthritis can be fixed?
 – Cartilage defects vs DJD

HISTORY

1. Onset
2. Location
3. Duration
4. Quality/Quantity
 – Swelling
 – Mechanical symptoms
5. Aggravating Factors
6. Relieving Factors
7. Associated Symptoms
8. Effect on Function **

What is the major problem?

- Pain
- Swelling
- Stiffness
- Locking
- Instability
History: Onset

• Injury
 – Torn ligament
 – Meniscus
 – Fracture
 – Patella dislocation
 – Rotator cuff tear

• No Injury
 – CMP, tendinitis
 – DJD
 – Meniscus
 – Rotator cuff tendinitis
 – Rotator cuff tear

• Non-contact

Contact Injury - Torn MCL

History: Onset

• Pain and Instability
• Blow to lateral aspect of knee (valgus force)
• Focal tenderness of medial knee along course MCL
History: Age Matters

• Less than 30-35 years of age
 – Dislocations/subluxation common
 • Falls on outstretched arm, abduction injuries
 • Throwing or overhead labral injuries
 – A-C joint injuries with direct fall injuries
 – Rotator cuff sprains common but tears unusual
 – Fractures only in high energy injuries
Shoulder: Patient’s Age

- Greater than 40 years of age
 - Fractures more common
 - Arthritic conditions of A-C joint and glenohumeral joint
 - Rotator cuff injuries more common
 - Strains, partial thickness tears
 - Full thickness tears

Symptoms - Patella

- Click / snap
- Grind
- Pain stairs
- “Movie Theatre sign”
Symptoms - ACL

- Instability (giving way)
- Can run straight ahead but cannot pivot

Hemarthrosis

- ACL
- ACL
- ACL
- Patellar dislocation
- Osteochondral fracture
- Peripheral meniscal tear
- PCL

- Patellar sleeve fracture
- Joint capsule tear
- PVNS
- Sickle Cell
- Hemophilia
- Anticoagulant therapy
- Ruptured aneurysm
Shoulder pain is not always shoulder pain:

- Cervical radiculitis/radiculopathy
- Myofascial pain
- Viral brachial plexopathy
- Thoracic outlet syndrome
- Pancoast tumor
- Neoplasm of humerus/shoulder girdle (mets)
- Thoracic disc herniation
- Abdominal problems (gall bladder, pancreatitis, etc.)
- Diaphragm irritation

Knee pain is not always knee pain:

- Hip Pain
 - Child/Adolescent
 - Arthritis
- Lumbar
The Simplified Knee Exam

- Hip / Lumbar spine exam
- Gait
- Alignment
- Effusion
- ROM
- Stability
- Palpation
- PF Crepitus
- Special tests

Radiography

- Lateral
- Merchant view(Patella)
 Not more than 30°!
- *Standing* Bilateral AP
- *Standing* PA view @ 45 deg flex
Standing PA 45 Flexion

Imaging alone should not dictate treatment

MRI

For suspected intra-articular abnormalities
Imaging alone should not dictate treatment

Medial Knee Pain

- Medial meniscus
- OA / DJD
- MCL Sprain
- Osteonecrosis
- Osteochondritis dessicans (OCD)
- Pes anserinus bursitis
- Semimembranosis tendinitis
- Stress fracture
- Physeal Injury
- Popliteal cyst
- Saphenous Neuritis
Two types of cartilage:

- Patella
- Femur
- Articular Cartilage
- ACL
- Meniscus
- Collateral Ligament
- Patella
- Tibia
- Fibula
- Tendon

Knee In Extension Knee In Flexion

Joint Line

Medial Knee Pain
Symptoms - Meniscus

Meniscus
- Pain
 - medial
 - lateral
- Clicking
- Popping
- Locking

DJD
- Aching
- Stiffness
- Pain

Medial Knee Pain

Meniscal Injuries
- “Popping” sensation
- Knee feels painful and tight
- Stiffness and swelling
- Exam:
 - Tenderness at joint line
 - Pain with extension or flexion
 - Effusion
- Meniscus can loosen drift into joint
 - Locking or catching of knee
 - “Pebble in the knee”
Incidental Meniscal Tears

• MRI diagnosed meniscal tears evident in 40% asymptomatic patient older than 50 years¹
• 56% in 70-90yrs old²
• Arthritis
 – 63% : if knee pain, aching, stiffness most days
 – 60% without those symptoms

1 Jerosh Archive Orthop Trauma Surg 1996
2. Eglund NEJM 2008

Arthroscopy in Osteoarthritis

• Ineffective pain / arthritis alone
• Does not alter the natural history of osteoarthritis
• Mechanical symptoms¹, loose bodies
• Factors to consider
 – Prior arthroscopy²
 – Correlation of symptoms to pathology
 – Severity of cartilage loss and bone marrow edema in the same compartment of meniscal tear³
 – Severity of meniscal extrusion
 – Meniscal root tear
 – Age > 70⁴
 – Alignment

¹Chang Arthritis Rheum 1993
²Spahn Arthroscopy 2006
³Kijowski Radiology 2011
⁴Wai JBJS 2002
Arthrocentesis

- Diagnostic
- Therapeutic

Treatment: Meniscal Injuries

- Injections, NSAIDS
- Menisectomy
- Meniscal Repair
 - Young person
 - Acute injury
 - Consider repair
 - Tear has to be in “red zone”
Meniscectomy

Medial Knee Pain

Meniscal Transplantation
Posterior Knee Pain

- Popliteal cyst (?ruptured)
- Popliteus rupture
- Torn meniscus
- DVT
- Popliteal artery aneurysm
- Hamstring strain (?)
- Referred pain
 - Swelling in knee
 - Chondromalacia patella

Anterior Knee Pain

- Osgood Schlatter’s disease
- Patella tendinitis – “jumper’s knee”
 - Sinding-Larsen-Johannson
- Patella instability
- Pre-patellar bursitis
- Patella or trochlea chondrosis (CMP)
- Patellofemoral Syndrome
- Bipartite patella
- (Synovial plica)
- Referred pain – back/hip/femur/foot
Patellar Tendinitis

- "Jumpers knee"
- Sinding-Larsen-Johannson
- Examination - Tenderness
 inferior pole of patella
Patellar Tendinitis

- Very common
- Usually non-op Tx
- Surgery in <1% - excise abnormal tissue at inferior pole of patella

Malalignment

- Bony alignment
- Joint geometry
- Soft tissue restraints
- Neuromuscular control
- Functional demands

\[\text{Abnormally directed load} \rightarrow \text{Exceed physiological threshold} \rightarrow \text{PAIN} \]
Etiology

• Acute trauma
• Overuse
• Abnormal lower limb alignment / mechanics
• Immobilization
• Soft tissue tightness

Despite uniform clinical picture - the etiology of PF problems is multifactorial and not consistent for all pts.

Not all patellar malalignment causes pain,
Not all anterior knee pain is from malalignment

• Excessive weight
• Muscle weakness
• Prolonged synovitis

Treatment - Patellofemoral

Avoid excess load
• Squats, Lunges, deep knee bends
• Stairmaster
• High impact aerobics
• Step aerobics
• Plyometrics
• Dryland training, stadium steps

Cycling
Rowing
Walking
Swimming
Lateral Knee Pain

- Lateral meniscus tear
 - Discoid
 - (Torn ACL)
- Runner’s knee - ITB syndrome
- OA / DJD
- Proximal tibiofibular joint

Iliotibial Band Syndrome

- Pain or burning located over the lateral aspect of the knee
- Aggravated by activity with repeated knee motion and relieved by rest
- Caused by friction of the ITB as it rubs over the lateral femoral condyle-may pop/snap
- Pain may radiate to thigh or hip
Lateral Knee Pain

ITB Syndrome Continued

- Physical Examination
 - tenderness over the ITB at the lateral femoral condyle
 - tightness with positive Ober's test
 - possible snapping with flexion/extension
 - no instability and usually no swelling

 - Hip examination
 - Core Strength
 - Standing limb alignment: Femoral version, tibial torsion, hindfoot varus/valgus
 - Shoe examination
ITB Syndrome Continued

• Treatment
 – physical therapy
 • U/S, massage, stretch, strengthen muscle imbalance
 – relative rest
 – ice
 – NSAID’s
 – correct biomechanical or training errors
 • Change shoes!

Anterior Cruciate Ligament (ACL)
ACL Tear

- Common sports injury
 - basketball, football, skiing, soccer
- Hx:
 - twisted knee
 - heard or felt a “pop”
 - immediate swelling
 - difficult to walk initially
- Most are non-contact
- Deceleration to a stop or landing
- Landing from a jump
- Cuts and pivots

Effusion
Anterior Drawer
Sensitivity 0.2 Specificity 0.88
ACL Tear

Lachman
Sensitivity 0.86 Specificity 0.91

Pivot Shift
Sensitivity 0.40 Specificity 0.98

MGH Sports Medicine
Partial ACL Tears

• Definitions:
 1. Injured but functional ACL
 • Appropriate injury mechanism, asymmetric KT-1000 difference, MRI suggestive of ACL injury AND negative pivot shift
 2. One bundle injury
 • Anatomic Location: anterolateral vs posteromedial bundle\(^1\)
 • A rare event
• Treatment should fit individual patient’s needs
• Therapeutic decision based on occupation, activity, amount of time in high demanding activities, presence of associated knee lesions
• Physiological age and activity more important than chronological age

Who Benefits?
Differentiate:
“Pain” from “Instability” from “Pain from instability”

• Surgical options: Prevent recurrent instability leading to higher quality of life

• Nonsurgical Options: (Older) No high demand activities, coping well with instability, pain
Nonsurgical management

- Patients who return to preinjury level activity may be significant risk for re-injury
- Bracing in higher risk activities considered
- May not be successful in preventing re-injury
 - Reliance on a brace to return to pre-injury levels of activity may lead to significant re-injury rates.

Expected Value Decision Analysis

Operative versus nonoperative treatment of anterior cruciate ligament rupture in patients aged 40 years or older: an expected-value decision analysis.

Seng et al. Arthroscopy 2008

- 69 Subjects
- Surgical reconstruction was optimal treatment strategy in patients 40 and older
- Averse to risk of possible re-injury, instability or modified return to activity
1. Glenohumeral Joint (Shoulder)
2. Acromioclavicular Joint (AC)
3. Sternoclavicular Joint (SC)
4. Scapulothoracic Joint (ST)

Dynamic Factors

- Rotator Cuff
- Scapular Rotators
- Long Head Biceps
- Ligament Dynamization
- Proprioception
Dynamic Factors

- Rotator Cuff

Primary Function
- Stabilize humeral head

Secondary Function
- Glenohumeral motion
- Dynamic Joint Compression
- Increased stability

- Shoulder
- Forward Flexion
- Abduction
- External Rotation
- Internal Rotation

Physical Exam: Shoulder
Forward Flexion

Supine Eliminates Scapular Motion

External Rotation

In Abduction
External Rotation

Internal Rotation

- T₇ – Inferior Angle
- T₃ – Spine Scapula
- T₁ – Superior Angle
Physical Exam

• ROM:
 – If PASSIVE range of motion is restricted
 • Arthritis (xray: true AP)
 • Adhesive capsulitis (frozen shoulder)
 – If ACTIVE range of motion restricted (but not passive)
 • Pain
 • Rotator cuff tear (partial versus full)
 – Lag (bounce back): If passive > active

True AP shoulder

True AP Standard AP
Strength: Supraspinatus

- Forward Flexion
- Pain & Weakness w/ Resisted Abduction in Scapular Plane
Strength: Infraspinatous

External Rotation

Strength: Subscapularis

Lift-off

Belly-Press
Palpation

Sternocostoclavicular (SC) joint Pain

Acromioclavicular (AC) joint Pain

Biceps Tendinitis
 Bicipital groove/tendon

Greater tuberosity (supraspinatus insertion)

IMPINGEMENT SYNDROME

- Cuff, bursa impinged by:
 - anterior acromion
 - CA lig.

Stage I: bursitis, edema
Stage II: tendinitis, fibrosis (25-40 yo)
Stage III: cuff tear

Impingement Signs (Hawkins/Neer)
ROTATOR CUFF INJURIES

- On autopsy:
 - 70% of people over 80 y.o.
 - 30% of people under 70 y.o.

- Not all are symptomatic

- Natural History:
 - Tears tend to get larger
 - Larger tears correlate level of disability

Mechanism of Injury

- Acute
 - Younger patient, associated with trauma

- Chronic
 - “Wear and tear”
 - Progression of pathology
 - RTC tendonitis – Impingement – Partial thickness tear – Full thickness tear – Massive tear – RTC Arthropathy
History

• Pain located lateral arm
• Pain when reaching overhead
• Can’t sleep at night
• Night Pain

Physical Exam

• INSPECT/PALPATE

• SHOULDER ROM
 – Lag - Difference between Passive and Active Motion

• SHOULDER STRENGTH**
 – Weakness, drop-arm

• IMPINGEMENT SIGNS
Rotator Cuff Tear

- MOST COMMON IS SUPRASPINATUS

- +/- Impingement sign

- Weakness on strength testing

What to do?

- Full thickness
 - Surgery (depending on chronicity)

- Partial thickness
 - PT
 - NSAID's
 - Cortisone Injection
 - Surgery
Shoulder Arthritis

- Degenerative disease shoulder
 - Arthroscopic debridement more effective than at the knee
- Injections
- Cartilage procedures
- Hemiarthroplasty, total shoulder arthroplasty
- Reverse total shoulder arthroplasty

"Knee pain is the malady – not osteoarthritis"
(Warner, 1992)

- Cartilage degeneration does not necessarily cause pain
- Synovial / capsular tissues are primary sources of pain
- Subchondral pain – late event

... Pain drives osteoarthritis treatment
Types of Cartilage Repair

1) Bone-marrow stimulation
 - microfracture
2) Transplantation of osteochondral grafts
 - OATS, mosaicplasty, allografts
3) Implantation of autologous cells (chondrocytes)
 - ACI
4) Matrices / scaffolds
 - +/- cells, +/- growth factors
Treatment Algorithm

<table>
<thead>
<tr>
<th>Small defects (≤2 cm²)</th>
<th>Large defects (>2 cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very small (≤2 cm²)</td>
<td>Small</td>
</tr>
<tr>
<td>OATS</td>
<td>no donor site morbidity</td>
</tr>
<tr>
<td>+ mature articular cartilage</td>
<td>+ arthroscopic procedure</td>
</tr>
<tr>
<td>+ primary bone healing</td>
<td>- complex rehab (CPM and TDWB 6-8w)</td>
</tr>
<tr>
<td>+ quicker recovery and return-to-play than microfracture</td>
<td>- prolonged Return-to-play 6-9 months</td>
</tr>
<tr>
<td>- technically difficult (mini-open)</td>
<td>- cost</td>
</tr>
<tr>
<td>- donor site morbidity with multiple plugs</td>
<td>- prolonged RTP 12-18 months</td>
</tr>
</tbody>
</table>

Trochlear Resurfacing

- [Image of Trochlear Resurfacing](image)
THANK YOU