

What is a biomarker?

• Indicator of disease:

- Trait: risk factor/ marker
 - Antecedent
- State: preclinical or clinical
 - Screening
 - Diagnostic
- Rate: progression
 - Staging
 - Prognostic

What Makes a Cardiac Biomarker Useful?

Goal: improve ability of clinician to optimize care of patient

- Characteristics:
 - Accurate, reproducible, available, interpretable
 - Known normal distribution and abnormal values
 - Acceptable to patient
 - Predicts outcome of interest
 - · Adds to existing clinical and laboratory assessment
 - Knowledge of levels changes management

Biomarkers in CVD states

- Coronary heart disease: Troponin
- Heart failure: NT-proBNP
- Emerging biomarkers: Galectin-3, sST2, proneurotensin

Biomarkers in CVD states

- Coronary heart disease: Troponin
- Heart failure: NT-proBNP
- Emerging biomarkers: Galectin-3, sST2, proneurotensin

5

Diagnosis of MI

- Detection of rise/fall of cTnl or cTnT
 At least one value > 99th percentile of the URL
- Evidence of myocardial ischemia with at least one of the following:
 - Symptoms
 - ECG changes (new ischemia, Q waves)
 - Imaging evidence of new loss of myocardium or new RWMA

HEART CENTE

Risk Factors Associated with Detectable hs-cTn

- Age
- Sex (male > female)
- Race (black > others)
- Lower eGFR
- History of HF
- Increased LV mass and LV thickness
- Hypertension
- Diabetes mellitus

de Lemos et al, JAMA 2010

hsTn Elevation in Apparently Healthy

- cTnl and cTnT are 100% specific for heart
 - High-sensitivity assay detects cTn in nearly all presumably healthy subjects
 - May reflect detection of *subclinical disease*
 - Indirect assessment of CV health
 - Structural/functional changes, CAD severity
 - Relevance of gender differences

hsTnT is Superior to cTnT for Diagnostic Evaluation of Chest Pain

	38%	96%
6 97%	67%	95%
6 99%	72%	93%
	5 99%	5 99% 72%

to NSTEMI by hsTnT NRI and IDI analyses demonstrate significant

improvement in diagnostic accuracy with hsTnT

Januzzi et al, Circulation 2010

Application of hsTn for differential dx

What's the problem?

 $cTn_{AMI} = cTn_{Myocarditis} = cTn_{Tachycardia} = cTn_{AHF}$ etc.

 hsTnT strongly associated with the presence and severity of CAD, as well as cardiac structure and function...

...independent of a diagnosis of ACS

Januzzi et al, Circulation 2010

Non-ACS Troponin Elevation • A real false positive Myocarditis • Normal variants? Pulmonary embolism Myocardial abscess Pericarditis Severe illness CHF and LVH - Sepsis • Arrhythmias and LVH Blunt chest trauma Idiopathic CMP Radiofrequency Chemotherapy or other ablation toxic/metabolic insults DC Cardioversion Cirrhosis • Transplant rejection Renal failure Aortic dissection

- Coronary heart disease: Troponin
- Heart failure: NT-proBNP
- Emerging biomarkers: Galectin-3, sST2, proneurotensin

Assessment of Heart Failure

No gold standard for the evaluation of HF exists!

History and Physical

Laboratory Testing

HEART CENTER

Natriuretic Peptides: Major Clinical Utilities

- To supplement clinical judgment
 - Acute evaluation and diagnosis
 - Grading HF severity
- To provide prognostication using processes not obvious at the bedside
- To offer unique information regarding therapeutic intervention
 - To judge therapeutic success
 - To guide therapy?

Know the Differential Diagnosis of an Elevated NP

- Unrecognized HF
- Prior HF
- LVH
- Valvular heart disease
- Atrial fibrillation
- Advancing age
- Myocarditis
- ACS
- Pulmonary hypertension
- Congenital heart disease

- Anemia
- Pulmonary embolism
- Cardiac surgery
- Sleep apnea
- Critical illness
- Sepsis
- Burns
- Renal failure
- Toxic-metabolic insults

Know the Differential Diagnosis of an Unexpectedly Low NP

- Obesity
- Non-systolic heart failure
- Mild acute heart failure
- Isolated right heart failure
- Partially treated heart failure

Sex Differences in NT-proBNP and BNP Levels

- Healthy: female > men
 - Lower BMI
 - Lower androgen (testosterone) levels
- Disease: female < male
 Increased incidence of HFpEF

Natriuretic Peptides: Major Clinical Utilities

- To supplement clinical judgment
 - Acute evaluation and diagnosis
 - Grading severity of HF
- To provide prognostication using processes not obvious at the bedside
- To offer unique information regarding therapeutic intervention
 - To judge therapeutic success
 - To guide therapy?

<section-header>

- Remodeling is not felt
- Remodeling is not detectable with physical exam, until too late
- Imaging can see remodeling, but only too late
- Predicting remodeling with imaging is imperfect

MASSACHUSETTS GENERAL HOSPED HEART CENTER

Higher NT-proBNP is Associated with Risk for Remodeling

Remodeling index	Hazard ratio*	95% CI	P value
Increase in LVEDVi	1.43	1.10-1.86	0.007
Increase in LVESVi	1.54	1.10-1.91	0.01
Fall in LVEF	1.53	1.12-1.89	0.02

*Hazard ratio refers to risk for remodeling per log-unit of NT-proBNP at the end of the study.

NT-proBNP was entered as log-transformed due to non-normality. Model adjusted for baseline log-transformed NT-proBNP, age, diabetes, ischemic heart disease and New York Heart Association Symptom Severity.

Weiner et al, Eur J Heart Fail 2012

"Shouldn't we be maximizing all heart failure meds in all patients?"

- Even for the skilled HF specialist with resources for close follow up, the *addition* of NP measurement is valuable
- The majority of heart failure care is not in the hands of heart failure specialists.
- Opportunities exist for achieving guidelinederived medical therapy goals

Therapies with Effects on B-Type Natriuretic Peptide Levels

Therapy	Effect on BNP/NT-proBNP
Diuresis	\downarrow
ACE-I	↓
ARB	\downarrow
β-blockers	Some transiently \uparrow , most \downarrow
Aldosterone antagonists	Ļ
BiV pacing	\downarrow
Exercise	\downarrow
Rate control of AF	\downarrow
BNP infusions	↓ N-BNP, \uparrow BNP then ↓

Biomarkers in CVD states

- Coronary heart disease: Troponin
- Heart failure: NT-proBNP
- Emerging biomarkers: Galectin-3, sST2, proneurotensin

Galectin-3 in HF Scientific Discovery

- In animal models of HF, galectin-3 is highly expressed in failing versus functionally compensated hearts
- Intrapericardial administration of galectin-3 significantly increases LV collagen content and reduces LV EF

Galectin-3

Sharma et al, Circulation 2004

P-NT Strongly Interacts With Gender on Risk of Incident CVD

Sample size / first events	HR per 1 SD (95% CI)	P-value			
All (4362 / 519)	1.17 (1.07-1.27)	<0.001			
Women (2559 / 224)	1.33 (1.17-1.51)	<0.001			
Men (1803 /295)	1.06 (0.95-1.19)	0.310			
Adjusted for age, sex, use of antihypertensive medication, systolic blood pressure,					

Adjusted for age, sex, use of antihypertensive medication, systolic blood pressure, BMI, current smoking, diabetes mellitus and fasting concentrations of HDL and LDL

Melander et al, JAMA 2012

30

NURAL HOSPITA

HEART CONTER

P-NT Strongly Predicts CVD in Women				
Q1 (of P-NT)	Q2 HR (95% CI)	Q3 HR (95% CI)	Q4 HR (95% CI)	P trend
1.0 (ref)	0.91 (0.59-1.41)	1.58 (1.08-2.30)	1.65 (1.13-2.41)	0.001
Adjusted for age, sex, use of antihypertensive medication, systolic blood pressure, BMI, current smoking, diabetes mellitus and fasting concentrations of HDL and LDL Melander et al, JAMA 2012				

P-NT Predicts New-Onset Diabetes Mellitus in Women

Sample size / first events	HR per 1 SD (95% CI)	P-value		
Women non-DM (2200 / 74)	1.41 (1.12-1.77)	0.003		
Women non-IFG (1950 / 38)	1.47 (1.08-2.00)	0.014		
Adjusted for age, use of antihypertensive medication, systolic blood pressure, BMI, waist circumference, prevalent cardiovascular disease, current smoking and fasting concentrations of glucose, HDL, LDL, triglycerides and insulin				

Melander et al, JAMA 2012

31

HIART CINTER

P-NT Predicts Breast Cancer (113 first events)				
Q1 (of P-NT)	Q2 HR (95% CI)	Q3 HR (95% CI)	Q4 HR (95% CI)	P trend
1.0 (ref)	1.32 (0.70-2.50)	1.89 (1.03-3.46)	2.80 (1.59-4.92)	<0.001
Adjusted for age, use of antihypertensive medication, <u>use of hormone replacement</u> therapy, ever use of oral contraceptives, educational level, age at menarche, age at <u>first child birth, number of children, menopausal status</u> , systolic blood pressure, BMI, diabetes mellitus, current smoking, prevalent cardiovascular disease, heredity for cancer, and fasting concentrations of HDL, LDL and insulin				
Melander et al,	JAMA 2012		ME	MASSACHUSETTS GENERAL HOSPITAL HEART CENTER

P-NT/Neurotensin Might Be Broad Markers of Women's Health Risk

- Associations with DM, CVD, death and breast cancer
- Identification of women at high risk (>20%) in absence of traditional risk factors
- Can this change management and therapeutic choices?

